POLYMORPHOUS FORMS OF ${
m Sb_2O_3}$ FORMED BY THERMAL DECOMPOSITION OF ${
m Sb_8O_{11}Cl_2}$

Ryoko MATSUZAKI, Atsuko SOFUE, and Yuzo SAEKI Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152

The modification of $\mathrm{Sb_2O_3}$ formed by the thermal decomposition of $\mathrm{Sb_8O_{11}Cl_2}$ varied with the method of preparing $\mathrm{Sb_8O_{11}Cl_2}$. Cubic $\mathrm{Sb_2O_3}$ was obtained by the thermal decomposition of $\mathrm{Sb_8O_{11}Cl_2}$, which was prepared by decomposing $\mathrm{Sb_4O_5Cl_2}$, below 560°C.

 ${\rm Sb_2O_3}$ is known in two crystalline modifications, a cubic form, senarmontite, and an orthorhombic form, valentinite, the latter being the commoner form. The temperature at which cubic and orthorhombic forms of ${\rm Sb_2O_3}$ are in equilibrium has been reported as $570\pm10^{\circ}{\rm C^{1}}$, or $557^{\circ}{\rm C^{2}}$, the cubic form being stable below this temperature.

Recently, Belluomini et al.³⁾ have found the existence of $\mathrm{Sb_8O_{11}Cl_2}$, and have reported that the $\mathrm{Sb_8O_{11}Cl_2}$ decomposes above 470°C according to the reaction, $\mathrm{Sb_8O_{11}Cl_2}(s) \rightarrow \mathrm{Sb_2O_3}(s) + \mathrm{SbCl_3}(g)$. But, they did not mention the modification of $\mathrm{Sb_2O_3}$ formed. In this letter, the variations of the modification of $\mathrm{Sb_2O_3}$ formed by the thermal decomposition of $\mathrm{Sb_8O_{11}Cl_2}$ with the method of preparing $\mathrm{Sb_8O_{11}Cl_2}$, and with its decomposition condition were reported.

Samples of $\mathrm{Sb_80_{11}Cl_2}$ were prepared by the following methods based on the report of Belluomini et al.³⁾.

Sample A: 10 g of special grade ${\rm SbCl}_3$ was hydrolyzed with 100 ml of ${\rm H}_2{\rm O}$ at 35°C. The precipitated ${\rm Sb}_4{\rm O}_5{\rm Cl}_2$ was washed with ethyl ether. The ${\rm Sb}_4{\rm O}_5{\rm Cl}_2$ was decomposed in an argon atmosphere at 460°C to ${\rm Sb}_8{\rm O}_{11}{\rm Cl}_2$.

Sample B : 10 g of $SbCl_3$ was hydrolyzed with 1500 ml of H_2O at boiling temperature. The precipitated $Sb_8O_{11}Cl_2$ was washed with ethyl ether, and dried at 120°C.

The chemical analyses of the both samples gave identical results: 79.8% Sb; 5.8% Cl (calcd.: Sb, 79.78%; Cl, 5.81%). The samples were also confirmed as ${\rm Sb_8O_{11}Cl_2}^{3)}$ by X-ray analysis. X-ray diffraction lines of Sample B were diffuse, and the intensities of the lines were lower than those of Sample A.

 $2.0~{\rm g}$ of the sample placed in a platinum boat was heated under an argon atmosphere at a specified temperature above $500^{\circ}{\rm C}$ for a specified period. The product obtained in the boat was examined by chemical and X-ray⁴⁾ analyses. Antimony was determined by titration with $0.1~{\rm N}$ KBrO₃. The sample was dissolved in 6 N HCl, and titrated at about $65^{\circ}{\rm C}$ using methyl orange as indicator. Chlorine was determined gravimetrically as AgCl. The sample was boiled with Na₂CO₃ solution in a platinum dish. The filtrate was acidified with HNO₃, and AgCl was precipitated from the filtrate by AgNO₃ solution. X-ray diffraction data were taken with Ni filtered Cu radiation.

The modifications of Sb2O3 formed by heating Samples A and B under various

conditions are shown in Tables 1 and 2, respectively.

In order to discuss the above-mentioned experimental results, the transformations of cubic and orthorhombic $\mathrm{Sb}_2\mathrm{O}_3$ under the experimental condition in this work were examined, respectively. A sample of cubic $\mathrm{Sb}_2\mathrm{O}_3$ used was prepared by the thermal decomposition of Sample A at $560^{\circ}\mathrm{C}$ for 2 hr. A sample of orthorhombic $\mathrm{Sb}_2\mathrm{O}_3$ was prepared by the thermal decomposition of Sample B at $560^{\circ}\mathrm{C}$ for 2 hr. By heating cubic $\mathrm{Sb}_2\mathrm{O}_3$ at $500\text{-}590^{\circ}\mathrm{C}$ for 0.5-3 hr, its transformation to orthorhombic form was not observed. The result with orthorhombic $\mathrm{Sb}_2\mathrm{O}_3$ is shown in Table 3.

Considering the fact that the transformation of cubic $\mathrm{Sb}_2\mathrm{O}_3$ to orthorhombic form was not observed, the orthorhombic $\mathrm{Sb}_2\mathrm{O}_3$ formed by the thermal decomposition of Sample A above 570°C(Table 1) is not considered to be due to the transformation of cubic $\mathrm{Sb}_2\mathrm{O}_3$ formed. From the result shown in Table 3, the cubic $\mathrm{Sb}_2\mathrm{O}_3$ formed by the thermal decomposition of Sample B at 500°C for 2-3 hr and at 560°C for 3 hr(Table 2) is considered to be due to the transformation of orthorhombic $\mathrm{Sb}_2\mathrm{O}_3$ formed.

Table 1 MODIFICATION OF ${\rm Sb_2O_3}$ FORMED BY THE THERMAL DECOMPOSITION OF SAMPLE A UNDER VARIOUS CONDITIONS

Temperature (°C)	Heating time (hr)	Form of Sb ₂ O ₃ *	Notes
500	0.5	Cubic	Undecomposed Sb ₈ O ₁₁ Cl ₂ 78%**
	1.0	Cubic	Undecomposed $\mathrm{Sb_8O}_{11}\mathrm{Cl}_2$ 38%
	2.0	Cubic	Undecomposed $Sb_8O_{11}Cl_2$ 21%
	3.0	Cubic	
560	0.5	Cubic	Undecomposed Sb ₈ O ₁₁ Cl ₂ 13%
	1.0	Cubic	
	2.0	Cubic	
	3.0	Cubic	
570	0.5	Cubic(1)+Orthorhombic(tr)	Undecomposed Sb ₈ O ₁₁ Cl ₂ 10%
	1.0	<pre>Cubic(1)+Orthorhombic(tr)</pre>	
	2.0	<pre>Cubic(1)+Orthorhombic(tr)</pre>	
	3.0	Cubic(1)+Orthorhombic(tr)	
580	0.5	Cubic(m)+Orthorhombic(m)	Undecomposed Sb ₈ O ₁₁ Cl ₂ 6%
	1.0	Cubic(m)+Orthorhombic(m)	
	2.0	Cubic(m)+Orthorhombic(m)	
	3.0	Cubic(m)+Orthorhombic(m)	
590	0.5	Orthorhombic	Undecomposed Sb ₈ O ₁₁ Cl ₂ 2%
	1.0	Orthorhombic	
	2.0	Orthorhombic	
	3.0	Orthorhombic	

^{*} Percentages: 1-large, m-moderate, tr-trace

^{**} The percentage of undecomposed ${\rm Sb_80_{11}Cl_2}$ was calculated from the chemical analysis

Table 2 MODIFICATION OF ${\rm Sb_2O_3}$ FORMED BY THE THERMAL DECOMPOSITION OF SAMPLE B UNDER VARIOUS CONDITIONS

Temperature (°C)	Heating tim	e Form of Sb ₂ O ₃ *	Notes
500	0.5	Orthorhombic	Undecomposed Sb ₈ O ₁₁ Cl ₂ 77%**
	1.0	Orthorhombic	Undecomposed $\mathrm{Sb_{8}O_{11}Cl_{2}}$ 39%
	2.0	Orthorhombic(1)+Cubic(tr)	Undecomposed Sb ₈ O ₁₁ Cl ₂ 20%
	3.0	Orthorhombic(1)+Cubic(tr)	
560	0.5	Orthorhombic	Undecomposed Sb ₈ O ₁₁ Cl ₂ 11%
	1.0	Orthorhombic	
	2.0	Orthorhombic	
	3.0	Orthorhombic(1)+Cubic(tr)	
570	0.5	Orthorhombic	Undecomposed Sb ₈ O ₁₁ Cl ₂ 7%
	1.0	Orthorhombic	
	3.0	Orthorhombic	
580	0.5	Orthorhombic	Undecomposed Sb ₈ O ₁₁ Cl ₂ 2%
	1.0	Orthorhombic	
	3.0	Orthorhombic	

- * Percentages : 1-large, tr-trace
- ** The percentage of undecomposed ${\rm Sb_8O_{11}Cl_2}$ was calculated from the chemical analysis

Table 3 RESULTS OF HEATING EXPERIMENTS ON ORTHORHOMBIC ${\rm Sb_2O_3}$

Temperature (°C)	Heating time (hr)	Form of Sb ₂ O ₃ *
	1	Orthorhombic(1)+Cubic(tr)
500	2	Orthorhombic(1)+Cubic(tr)
	3	Orthorhombic(1)+Cubic(s)
	1	Orthorhombic
560	2	Orthorhombic
	3	Orthorhombic(1)+Cubic(tr)
5 7 0	2	Orthorhombic
3,0	3	Orthorhombic
580	3	Orthorhombic

^{*} Percentages : 1-large, s-small, tr-trace

From the above-mentioned results, it may be concluded that the modification of $\mathrm{Sb}_2\mathrm{O}_3$ formed by the thermal decomposition of $\mathrm{Sb}_8\mathrm{O}_{11}\mathrm{Cl}_2$ varies with the method of preparing $\mathrm{Sb}_8\mathrm{O}_{11}\mathrm{Cl}_2$. According to the reported papers, cubic $\mathrm{Sb}_2\mathrm{O}_3$ has been formed by

sublimation of orthorhombic $\mathrm{Sb_2O_3}$ at $400\text{-}500^\circ\mathrm{C}$ in $\mathrm{vacuo^2,5)}$, or by heating orthorhombic $\mathrm{Sb_2O_3}$ placed in a platinum boat in a sealed, evacuated Pyrex tube at $470\text{-}550^\circ\mathrm{C}$ for $12\text{-}24~\mathrm{hr^1}$). It has also been reported that cubic $\mathrm{Sb_2O_3}$ is formed together with orthorhombic form in the smoke from d. c. arcs, in air at atmospheric pressure, between two electrodes of Sb metal⁶). It seems to be of interest that cubic $\mathrm{Sb_2O_3}$ was obtained by the thermal decomposition of $\mathrm{Sb_8O_{11}Cl_2}$, which was prepared by decomposing $\mathrm{Sb_4O_5Cl_2}$, below $560^\circ\mathrm{C}$.

REFERENCES

- 1) E. J. Roberts and F. Fenwick, J. Amer. Chem. Soc., <u>50</u>, 2125 (1928).
- 2) W. B. Hincke, J. Amer. Chem. Soc., 52, 3869 (1930).
- 3) G. Belluomini, M. Fornaseri, and M. Nicoletti, Period. Mineral., <u>36</u>, 147 (1967)., Mineral. Magaz., <u>36</u>, 1037 (1968).
- 4) ASTM card 5-0534, 11-0689.
- 5) M. C. Bloom and M. J. Buerger, Z. Kristallographie, <u>96</u>, 365 (1937)., G. Cohn and C. F. Goodeve, Trans. Farady Soc., 36, 433 (1940).
- 6) J. Harvey, H. I. Matthews, and H. Wilman, Disc. Farady Soc., No. 30, 113 (1960).

(Received October 23, 1973)